Электрохромное стекло: Купить Электрохромное стекло от 32000 руб. Смарт стекло цены от производителя в Москве

Содержание

Установка стеклянных перегородок, остекление зданий из смарт-стекла с разными функциями

Что такое смарт-стекло? От английского словосочетания «smart window» произошло название «стекло с изменяющимися свойствами», «электрохромное стекло» или «умное стекло».

  • Какие технологии используют при изготовлении смарт-стекла
  • Смарт-стекла под управлением электричеством
  • Полимерное смарт-стекло
  • Плавное изменение прозрачности
  • Электрохромные смарт-стекла

Смарт-стекло – это композит из сразу нескольких слоев стекла и химических материалов, которые используются в архитектуре или при изготовлении таких светопрозрачных конструкций как двери, перегородки или окна. Смарт-стекла способны изменять свои оптические свойства – матовость или опалесценцию, коэффициент поглощения тепла, коэффициент светопропускания при определенном изменении внешних условий, к примеру, подача электричества, температура или освещенность.

Рис. 1. При подаче электрического сигнала смарт-стекло становится матовым

Какие технологии используют при изготовлении смарт-стекла

Разнообразие таких типов стекольных композитов основываются на фотохимических явлениях, что связанны с изменением пропускающих свойств в момент изменения внешних условий, например, электрохромизм или электрическое напряжение, термохромизм или температура, фотохромизм или изменение светового потока.

Бывают устройства, в которых применена технология LCD, или как их еще называют жидкие кристаллы, при условиях термотропного состояния при возрастающей температуре способны изменять количество пропускаемого света. К примеру, вольфрам при добавлении диоксид ванадия (VO2), способен отражать инфракрасное излучение только тогда, когда температура поднимается выше 29°С, после чего способен блокировать солнечное излучение через оконный проем даже при очень высоких показателях внешней температуры.

К сожалению, такие типы стекол контролировать просто невозможно, все происходит автоматически.

Окно из смарт-стекла, которое управляется электричеством, может изменять свои свойства в зависимости от существующих внешних условий, таких как температура или показатель яркости освещения, но лишь с применением определенных и соответствующих датчиков, к примеру, фотодатчика или термометра. Помимо этого к смарт-стеклам относятся автоматически открывающиеся или закрывающиеся и самоочищающиеся окна для вентилирования. Например, автоматические окна открываются или закрываются по сигналу или по времени от датчика дождя. Бывает, что к смарт-стеклу относят даже специфическое остекление. К примеру, такое как проекционное остекление, основанное на аналогичных или диффузных технологиях. Такое как звуковое стекло, поверхность которого это динамик, что наполняет помещение особым равномерных звуком. Такое как сенсорное стекло, которое регулируется при помощи специального указателя или касания рук. Или такое как электрообогреваемое, где обогрев происходит равномерно по всей площади стекла. Здесь главное не путать стекла, которые установлены в автомобилях, потому что для установки в авто используются лишь нитевидные нагревательные элементы.

Рис. 2. Вариант остекления фасада с помощью смарт-стекла

Смарт-стекла под управлением электричеством

Основными технологиями смарт-стекла называют электрохимический или электрохромный слой, на взвешанных частицах (Suspended particle devices или просто SPD) и полимерный жидкокристаллический слой (Liquid crystal devices или просто LCD).

Как любой другой материал или изделие смарт-стекло обладает как преимуществами, так и недостатками.
К примеру, смарт-стекла позволят значительно уменьшить потерю тепла в помещении и значительно сократить расходы на освещение или кондиционирование комнаты. Кроме этого смарт-стекло служит прекрасной альтернативой механическим шторам, затеняющим экранам или жалюзи. Электрохимическое или жидкокристаллическое смарт-стекло в прозрачном состоянии не будет пропускать ультрафиолетовых лучей. А вот смарт-стекла на взвешанных частицах потребуют для блокирования ультрафиолетового излучения использовать специальные дополнительные покрытия.

К основным недостаткам смарт-стекла относят достаточно высокую стоимость, необходимое использование электричества, скорость переключения состояний, замутнение (опалесценцию) или меньшую прозрачность, если сравнивать показатели обычного и смарт-стекла. Необходимо также отметить и то, что такой современный продукт как смарт-стекло в сравнении со своими предшественниками обладает более низким уровнем опалесценции, поэтому таким стеклом можно будет управлять при помощи безопасного низковольтного питания в 12-36 Вольт.

Полимерное смарт-стекло

Полимерные жидкокристаллические устройства (LCD, PDLCs, Polymer dispersed liquid crystal devices) отличаются своими кристаллами, вернее их разложением на отдельные составляющие, то есть диспергирующие кристаллы в жидкий полимер, после чего они затвердевают или же фиксируют сам полимер.

В момент перехода полимера из жидкого состояния в твердое состояние, жидкие кристаллизованные решетки просто не совместимы с твердыми полимерами, поэтому формируют вкрапления или капли в самом полимере. Условия такой фиксации будут влиять на размеры капель, а это в свою очередь приведет к изменениям в свойствах смарт-стекла.

Как правило, жидкая смесь жидких кристаллов и полимера располагается между слоем пластика и стекла, при этом на материалы наносится тонкий слой прозрачного проводящего вещества, что обеспечивает и затвердевание полимера и подвод напряжения. Только такая принципиальная структура смарт-стекол считается эффективным рассеиванием. От источника электропитание подключается к электродам. Электроды специально изготавливаются из медной фольги, на которой присутствует слой электропроводного клея, который и создает контакты с проводящим слоем пленки.

Без необходимого электрического напряжения жидкие кристаллы находятся в капле и случайно упорядочены, а такое состояние кристаллов приводит к рассеиванию всех параллельных световых лучей. Такое стекло отличается молочно-белым цветом.

Рис. 3. Смарт-стекло с матовым молочным цветом в офисных перегородках.

В момент подачи необходимого напряжения электрическое поле между двумя отдельными электродами (прозрачными) на стекле принуждает жидкие кристаллы выравниваться. При этом электрическое поле позволяет солнечным лучам проходить сквозь капли, при этом рассеивание капель очень мало. И стекло просто переходит в прозрачное состояние. Показатель или степень прозрачности можно контролировать приложенным на смарт-стекло напряжением. Объясняется такая возможность тем, что при маленьком напряжении лишь часть жидких кристаллов способно выровняться в электрическом поле полностью. И только малая порция световых лучей способна пройти сквозь стекла без искажений, в момент, когда большая порция света просто рассеивается. При возрастании напряжения все меньше кристаллов остается не выровненными, а это в свою очередь может привести к наименьшему рассеиванию световых лучей. Помимо этого есть возможность контролировать даже количество тепла и света, что проходят через стекла. Для этого необходимо использовать добавочные внутренние слои или специальные красители. Кроме этого можно создавать противорадиационные и противопожарные версии для использования стекол в специализированных устройствах.

Плавное изменение прозрачности

Один из американских исследовательских центров продемонстрировал изображение, которое вполне может быть сформировано в полимере или в прозрачных электродах, при этом позволяя производство декоративных или экранных окон. Основная часть устройств, которые сегодня предлагают производители функционируют лишь в состояниях ВКЛ или ВЫКЛ. Вот только технология обеспечения разнообразных уровней прозрачности стекла с легкостью может быть достигнута.

Такой вид технологии используют и для внутренних и для внешних установок по контролю приватности, к примеру, для душевых, ванных, переговорных, и медицинских комнат или же для проектора и его временного экрана.

Устройства со взвешенными частицами или SPD (Suspended particle devices) тончайший слой пленки слоистых материалов стержнеобразных частиц, которые взвешены в жидкости помещают меж отдельными слоями пластика и стекла, либо присоединяют к одному из слоев. Если же электрическое напряжение не подается, взвешенные частицы ориентируются в случайном порядке и поглощают световые лучи так, что стекла становятся темными или непрозрачными, синего, черного или иногда даже реже серого цвета.

А вот если электрическое напряжение подается, тогда взвешенные частицы не только полностью выравниваются, но и позволяют световым лучам проходить сквозь стекло. Смарт-стекла с взвешенными частицами вполне способно мгновенно переключиться либо осуществить самый точный контроль по количеству проходящего тепла и света. Постоянный пусть даже и маленький электрический ток необходим смарт-стеклу постоянно, если стекло прозрачное.

Электрохромические или электрохромные смарт-стекла способны изменить уровень прозрачности материала в момент подачи электрического напряжения, и как следствие способны контролировать общее количество пропускаемого тепла и света. Изменение в состоянии смарт-стекол можно засечь по изменяющемуся цвету стекла. Полупрозрачное состояние устройство – это обычно либо синий цвет, либо прозрачный цвет стекла. Темные оттенки смарт-стекла обычно начинаются с еле заметного затемнения и заканчиваются самой насыщенной тонировкой. В основном подача электрического напряжения нужна лишь для изменения показателя прозрачности стекла, вот только после изменения состояния смарт-стекла необходимость в электропитании полностью исчезает, поэтому достигнутое состояние стекла можно уже не поддерживать электричеством.

Рис. 4. Матовые смарт-стекла для стеклянных дверей в офисах для обеспечения конфеденциальности

Затемнения на смарт-стекле будут возникать только по краям устройства, перемещаясь все глубже внутрь, то есть в центр стекла. Это довольно медленный процесс, который занимает от нескольких секунд до нескольких минут, период времени здесь будет зависеть от размера окна, такой эффект называют радужным.

Используются электрохимические материалы, для того чтобы контролировать количество тепла и света, что проходят через окно. Применяется такой вид материалов в основном в автомобильной индустрии и для автоматических затемнений зеркал при различном освещении.

Электрохромные смарт-стекла

Электрохромные стекла могут обеспечить видимость даже в самых затемненных состояниях, тем самым такой вид стекла способен сохранить визуальный контакт с окружающей внешней средой. Такой эффект используют для производства, например, зеркал заднего обзора. Помимо этого электрохромную технологию применяют во внутренних устройствах, к примеру, для того чтобы защитить объект, находящийся под стеклом в музее. Или же для защиты картин от каких-либо повреждений, воздействия ультрафиолета или световых волн видимых диапазонов.

Рис. 5. Офисные перегородки из умного стекла с изменяемой прозрачностью.

Полианилин служит прекрасным примером электрохромного материала. Кстати, полианилин может создаваться химическим или электрохимическим окислением анилина. В момент погружения электрода в специальную соляную кислоту с примесью анилина, на этом электроде начинает формироваться пленка полианилина. Полианилин может быть окрашен в желтый, темно-зеленый или темно-черный цвет, здесь все будет зависеть от окислительно-восстановительного состояния. Существуют и другие электрохромные материалы, которые применимы на практике, к таким относят оксид вольфрама и виологены. Такие вещества находят применение в производстве электрохромного или смарт-стекла.

В соединении с TiO2 (диоксид титана) виологен используется для изготовления цифровых дисплеев. Кстати, именно такое соединение вскоре полностью заменят жидкокристаллические экраны, потому что именно виологен темно-синего цвета прекрасно контрастирует со светлым титаном и при этом обеспечивает высокий уровень контрастности экрана.

стекло — новая реальность в стекольной индустрии

Смарт-стекло на оконном рынке тема не новая. Использование стекла с переключаемой прозрачностью становится популярным в архитектурной среде и отражает современные тенденции развития интерактивных устройств. Такой ультрасовременный элемент дизайна ориентирован на высокие достижения в области техники, и то, что казалось невероятным еще несколько лет назад, теперь становится реальностью. На выставке Glasstec 2016 (Дюссельдорф, Германия) компании-производители представили инновации в области изготовления и применения Smart-стекла, рассказывает портал ОКНА МЕДИА.

Как появилась идея смарт-стекла

Тема производства умного стекла обсуждается на рынке уже около 20 лет, производителей этим не удивить, но для конечного потребителя оно остается новинкой.

Началось все в 1979 году, когда Стив Абади решил создать электронное стекло. На тот момент это было технически невозможно. Его мечта сделать стекло на основе жидких кристаллов не угасла и воплотилась в реальность только в 1984 году в виде стеклопакета “LC Glass”. Для рынка стекольной промышленности того времени это было слишком новым и малопонятным изделием. Стиву пришлось оставить производство электронных стекол почти на 20 лет.

Фото: Стив Абади, 1984 год

В 2003 году г-н Абади основал компанию Innovative Glass Corporation, в которой был председателем и главным исполнительным директором, и во второй раз вывел на рынок электронное стекло с зарегистрированной торговой маркой E-Glass.

В России умное стекло появилось в 2009 году, и со временем стало применяться не только в офисных зданиях для обеспечения конфиденциальности переговоров, но в домах людей, которые могут позволить себе следить за каждым новшеством в дизайне и архитектуре.

Окна, перегородки, пол со смарт-стеклом можно встретить пока в единичных объектах элитной недвижимости России – офисах крупных банков, культурных центрах и загородных домах, пентхаусах, многоуровневых квартирах. Большой популярностью такой смарт продукт пользуется среди москвичей, которые проживают на Рублевско-Успенском шоссе и Новой Риге. В главном офисе Сбербанка в Нижнем Новгороде в семи переговорных комнатах установлено такое стекло. Самый знаменитый проект с использованием умного стекла выполнен в месте российской экспозиции музея Аушвиц-Биркенау (Освенцим) в Польше.

Виды и технологии Smart стекол

Метод изготовления смарт стекол придуман более 20 лет назад и постоянно усовершенствуется, и только сейчас намечается тренд на его массовое использование. Потребители в основном не знают о существовании такого изобретения и не в состоянии себе позволить его. Технологии смарт-стекла претерпели изменения за эти годы — стали потреблять меньше энергии и стоимость их снижается с каждым годом, что дает возможность в перспективе вывести продукт в массы.

Технология Умного стекла

Изготавливается оно способом триплексования 2-х или более листов стекла. Ламинирующие пленки, используемые для его производства, по технологии делятся на три вида:

  • EVA – этиленвинилацетатная пленка. Главное ее преимущество – низкая стоимость как самой EVA-пленки, так и оборудования для ее производства. Она отличается хорошей липучестью к пластику и стеклу, но имеет высокую степень мутности и малую прочность.
  • PVB – поливинилбутиральная пленка. Отличительная характеристика то, что имеет высокое качество на выходе, но на старте – высокую стоимость производства. Пленка PVB хорошо прилипает к стеклу, но плохо к пластику. И также как EVA- пленка Поливинилбутиральная пленка (PVB) не выдерживает условия повышенной влажности.
  • TPU – пленка из термопластичного полиуретана. Она наиболее подходит для производства смарт-стекла. Пленка TPU невосприимчива к влажности, к агрессивным условиям, плюс имеет высокую адгезию как к стеклу, так и к пластику.

В России пока нашла наибольшее применение EVA-пленка в силу своей наименьшей стоимости, в Европе же наоборот – наибольшее распространение получила TPU-пленка из-за своих свойств и характеристик.

1. Смарт-стекло на основе жидкокристаллических полимерных частиц (PDLC или LCD)

Стекло PDLC и LCD выполнено на основе жидкой смеси полимерных кристаллов, находящихся среди двух пластов стекла с электропроводящим покрытием и формирующих слой, изменяемый прозрачность. Жидкокристаллические частицы распадаются на составляющие, а затем переходят в твердое состояние. Так, жидкие частицы и твердой полимер оказываются несовместимы, тем самым формируются вкрапления в полимере. Без электричества они располагаются хаотично, свет рассеивается, проходя через них, и такое стекло приобретает матовый оттенок: может быть молочно-белый, молочно-серый или молочно-голубой оттенок. При включении электричества жк-частицы меняют позицию, все как одна встают вертикально по отношению к стеклу, и оно становится прозрачным или полупрозрачным, в зависимости от возможности подаваемого электричества, причем просветление может быть сегментированное. Продукт на основе PDLC имеет регулируемую прозрачность и потребляют электричества около 4-5 Вт. на м2, прозрачности или матовости достигается за 5 секунд.

На выставке Glasstec 2016 несколько компаний представили свои разработки смарт-стекла. Компания Saint Gobain продемонстировала посетителям Privacy Smart Glass – универсальное решение для тех, кто хочет создать личное пространство. За счет подачи электричества smart glass из прозрачного превращается в непрозрачное менее чем 0.01 секунд. Управлять им можно с помощью встроенного выключателя, дистанционного пульта, датчиками движения, таймера, в зависимости от индивидуальных потребностей каждого клиента.

Компания NSG Group, владелец торговой марки Pilkington представили Private Window – окно, выполненное на основе жидких кристаллов. Испанская компания Dream Glass Group (DGG) на выставке Glasstec 2016 представила новый продукт DreamGlass® Privacy Glass – ламинированное стекло, покрытое тонкой пленкой, которая позволяет мгновенно изменять его цвет с помощью выключателя. Privacy Glass позволяет управлять яркостью, то есть может быть не полностью матовым, а осветлять по квадратам или полоскам, что дает большой простор для творческой мысли дизайнеров и архитекторов.

DreamGlass® Privacy Glass может поставляться в различных формах и может быть установлено в любом месте, что предоставляет возможность конечному потребителю создать интерьер по своему желанию и вкусу. Этот продукт сочетает в себе не только функциональность, но и эстетическую привлекательность.

Фото: Privacy Glass (on/off) 

2. Смарт-стекло на основе «взвешенных частиц» (SPD)

Способ на основе SPD использует «взвешенные частицы», которые помещаются между двумя слоями электропроводящего покрытия. Пленка SPD практически схожа по структуре с LCD. Но благодаря слоистой стержнеобразной структуре частиц, стеклянные смарт панели SPD визуально открыты в разных состояниях. При выключенном напряжении имеет черный или темно-синий цвет, при подаче электроэнергии частицы выравниваются, и свет может беспрепятственно проходить, и оно становится прозрачным. Скорость переключения, при котором оно меняет цвет от темного до светло-голубого или серого оттенка, практически мгновенная (2-3 сек. ).

Комплектация смарт-стекла с регулируемой прозрачностью поставляется как дополнительная опция в элитные автомобили. К сожалению, на выставке Glasstec 2016 смарт-стекло SPD представлено не было.

Фото: Смарт-стекло SPD (on/off) 

3. Смарт-стекло на основе электрохромных частиц (ECD) 

Электрохромная или электрохимическая стекольная продукция позволяет контролировать количество света и тепла, проходящих через них. В них изменяемый слой формируется за счет напыления ионов лития в несколько слоев. Принципиальная разница между способами изготовления PDLC и SPD и ECD в том, что без электричества смарт-стекло ECD прозрачное, а под воздействием электричества оно затеняется. Оттенки варьируются от цветного до полупрозрачного состояния (обычно до синего). Электрическая подпитка в границах 3-5 Вт необходима электрохромным панелям только при изменении цвета, далее нет нужды в постоянной поддержке электропитания. Скорость изменения цвета более длительная, чем у стекол PDLC и SPD. Так, время на его затемнение может варьироваться от 2 до 6 минут, а время осветление – 5 до 8 минут.

Изделие, выполненное по ECD технологии, применяется в основном в автомобилях, но становится популярным и в оконных конструкциях, в том числе в мансардных окнах. Кроме того, электрохромное стекло может применяться в устройствах защиты, например экспонатов музея. Такое смарт-стекло защитить редкие шедевры от воздействия ультрафиолетовых лучей и световых волн.

Фото: Смарт-стекло ECD (on)

Компания Saint Goben представила на выставке динамический электрохромный продукт SageGlass, которое благодаря функции light zone предоставляет возможность регулировать передачу тепла, адаптирует свет, что, в свою очередь, позволяет более рационально затемнять и осветлять пространство.

4. Смарт-стекло на основе светодиодов (Glassiled)Glassiled – светодиодная технология, которая предлагает широкие возможности вариаций в дизайне, цвете и интенсивности света светодиодов. На выставке Glasstec 2016 AGC представила 13-метровый стеклянный помост, выполненный с помощью технологии Glassiled Sigh с логотипом компании.

В отличие от матричного способа изготовления светодиодных уличных экранов, за основу в котором берется плата (модуль) и на ней размещают светодиоды и электронику, управляющую ими, в технологии Glassiled светодиоды встроены между двумя стеклами и работают через прозрачное токопроводящее покрытие. Glassiled – это технологический прорыв во всем мире.

Изделие, выполненное методом Glassiled, может быть использовано в конструкциях внешних фасадов и в интерьере – мебель, перегородки, стеллажи. Glassiled предоставляет архитекторам и дизайнерам полную свободу творчества. Продукция на основе Glasslied сохраняет до 99% своей прозрачности, что не может нарушить или испортить дизайн. Кроме того, такое смарт-стекло просто в установке и в обслуживании электроники, потребляют мало энергии и сочетают в себе лучшее из стекольных свойств и света. Таким образом, стекло с Glassiled может использоваться как мультимедийный экран.

Фото: Смарт-стекло по технологии Glassiled 

Перспективы развития смарт-стекла

Новые тенденции в стекольной промышленности, представленные на выставке Glasstec 2016, показали, что смарт-стекло может скоро войти в нашу повседневную жизнь. Помимо всех функциональных преимуществ это еще и экономия энергии, защита от уф-излучения, снижение шума, безопасность в эксплуатации и многое другое. Оно способно выступать в качестве элемента декорирования и создания приватности пространства.

Специалисты предрекают умному стеклу большое будущее. Такой продукт позволяет совмещать свойства других видов стекольных изделий. Хотя его цена баснословна от 1000 евро за один м2, но новаторы и последователи интерактивных технологий готовы отдать за них любые деньги.

По данным Министерства энергетики США, применение смарт-стекла вполне может сократить потребление энергии почти на 40%. Энергосберегающее свойство такого продукта становится основной движущей силой торговли смарт-стекла.

Смарт стекло уже достигло ограниченного коммерческого успеха. Так, смарт-стекло, выполненное по технологии «взвешенных» частиц, в настоящее время все чаще применяют в автомобилях премиум и люкс класса, таких как Mercedes-Benz SLK. Электрохромные были установлены в новом Boeing 787 Dreamliner.

Ведущие игроки рынка стекольной промышленности, безусловно, заинтересованы в развитии способов производства смарт-стекла, а главное – в их удешевлении и, соответственно, в большей доступности для конечного потребителя. Компания Saint Gobain инвестировала $80 млн. в SageGlass для разработки нового энергоэффективного стекла. В целом на разработку технологий изготовления смарт-стекол за последние несколько лет было выделено около $100 млн.

Согласно отчету Stratistics Market Research Consulting, глобальный рынок смарт-стекла в 2015 году составил более $32 млрд. и по оценкам специалистов к 2022 году достигнет $126.7 млрд., увеличивая ежегодные темпы роста на 21.2% в течение прогнозируемого периода (2015-2022).

Аналитики TechNavio прогнозируют рост глобального производства smart стекла в среднем на 19.88% за период 2016-2020 гг. Доклад, представленный TechNavio, охватывает настоящую ситуацию и перспективы роста мирового рынка смарт-стекла. Аналитики поделили общую площадку на 3 сегмента, основанные на географии: Северная и Южная Америка, страны APAC и регион EMEA (Европа, Россия, Ближний Восток, Африка). Отчет также включает в себя обсуждение ключевых поставщиков смарт-стекла таких, как AGC, Corning, Saint-Gobain, PPG и DuPont.

В целом, глобальный рынок умного стекла в настоящий момент развивается очень бурно. Растет спрос на энергосберегающие продукты и экологически чистые здания. Но недостаток знаний потребителей о преимуществах смарт-стекол и пока еще слишком высокая стоимость создает препятствие для более интенсивного и глобального роста смарт-стекол. Компании-лидеры в этой области стараются объединяться, сотрудничать и развиваться вместе с другими компаниями смежных областей, в том числе с производителями и поставщиками химических продуктов, научно-исследовательскими институтами и т.д.

Для оконных компаний в России умные окна открывают широкие горизонты. Производители и потребители только начинают «входить во вкус» и видеть преимущества новых технологий. Со временем смарт-стекла станут доступны широким массам, что приведет к вытеснению таких привычных сейчас аксессуаров для окон, как шторы и жалюзи.

Портал ОКНА МЕДИА рекомендует: Смарт стекло вытеснит с рынка жалюзи и шторы

Как работает электрохромное стекло | Шалфейное стекло

Как работает электрохромное стекло

Пять слоев керамического материала наносятся на тонкий кусок стекла.

Применение небольшого электрического заряда заставляет ионы лития перемещать слои. ..

…делаем тонировку стекол.

Изменение полярности приводит к тому, что стекло становится прозрачным.

Интеллект смарт-стекла

Для работы в полевых условиях электрохромному стеклу требуется программное обеспечение и средства управления, чтобы определять, когда и как оно должно окрашиваться. Используя комбинацию данных прогнозирования и данных в реальном времени, таких как погода, местоположение и облачный покров, программное обеспечение и элементы управления управляют дневным освещением, бликами, потреблением энергии и цветопередачей в течение дня.

Обзор продукта

Преимущества электрохромного стекла

Оздоровительный центр

Электрохромное стекло может быть частью здоровой стратегии строительства, обеспечивая доступ дневного света в течение всего дня и вид без бликов или перегрева.

Учить больше

устойчивость

Оптимизируя теплопередачу, смарт-стекло может снизить нагрузку на ваши системы отопления, вентиляции и кондиционирования воздуха и уменьшить ваши счета за электроэнергию.

Учить больше

Отличительный дизайн

Электрохромное стекло позволяет увеличить площадь стеклянных фасадов без необходимости использования чрезмерных затеняющих устройств, что обеспечивает чистую современную эстетику.

Учить больше

Проверенная технология

Умное стекло SageGlass успешно используется в тысячах проектов на нескольких континентах.

Учить больше

Преимущества электрохромного стекла

Как выбрать подходящего партнера по электрохромному стеклу

При выборе партнера по электрохромному стеклу учитывайте эстетику, опыт, стабильность и качество.

Поговорите с представителем, чтобы узнать больше о преимуществах SageGlass.

Свяжитесь с нами

  • Превосходная эстетика

  • Соответствующие ссылки

  • Стабильная организация

  • Качественный продукт и поддержка

  • Расширенное программное обеспечение и элементы управления

  • Простая системная интеграция

Свяжитесь с нами

Ресурсы

Стеклопакеты Лист

Обзор системы управления Symphony

Обзор алгоритма SageGlass

Что такое электрохромное смарт-стекло?

Электрохромное смарт-стекло (EC)

Электрохромное смарт-стекло изменяет коэффициент пропускания (т. е. количество света, которое оно пропускает) под действием электрического сигнала. Это обратимое изменение изменяет состояние стекла между прозрачным и непрозрачным (или любым промежуточным состоянием).

В последнее время также ведутся исследовательские работы по изменению отражательной способности электрохромного смарт-стекла таким же образом.

Как батарейка, что-то вроде…

Как видно из диаграммы, панель из электрохромного стекла состоит из нескольких слоев.

Этот пакет обычно имеет толщину в несколько микрон (несколько тысячных долей миллиметра) и создается с использованием того же метода физического осаждения из паровой фазы (PVD), который используется в производстве полупроводников.

На верхней и нижней стеклянных панелях имеются прозрачные проводящие слои, обычно из оксида индия-олова (ITO), превращающие всю конструкцию в нечто похожее на батарею, где ITO состоит из электродов.

В центре структуры находятся электрохромный слой и электролитический слой, отвечающие за изменение коэффициента пропускания.

Когда вы подаете напряжение на ITO, заряженные частицы (обычно ионы лития) мигрируют из электролита в электрохромный слой (часто оксид вольфрама, который прозрачен в неактивном состоянии).

Это приводит к тому, что электрохромный слой подвергается электрохимическому восстановлению-окислению (т. е. окислительно-восстановительному процессу), что приводит к поглощению света и вызывает его окраску.

(Иногда имеется дополнительный слой хранения ионов, который подает заряженные частицы в электролит, но на приведенной выше диаграмме он не показан).

При изменении или отключении напряжения ионы лития мигрируют обратно из электрохромного слоя в электролит, в конечном итоге возвращая стеклу его прозрачное состояние. Это изменение состояния может занять порядка нескольких минут.

Почему электрохромное стекло меняет коэффициент пропускания?

Когда к электрохромному слою прикладывается напряжение, ионы лития будут «интеркалировать» (т. е. внедряться) в электрохромный слой.

Вставленные ионы лития уменьшают «ширину запрещенной зоны» оксида вольфрама примерно до 2 электрон-вольт (эВольт), что означает, что падающие фотоны, имеющие по крайней мере эту энергию, могут поглощаться оксидом вольфрама, переводя электроны в более высокое энергетическое состояние. .

Поскольку фотоны видимого света имеют по крайней мере эту энергию, они поглощаются интеркалированным электрохромным слоем, и можно увидеть, что солнечное излучение, которое достигает человеческого глаза, проходя через стекло, не имеет этих длин волн, т. е. ему не хватает видимого света и, таким образом, кажется окрашенным.

Архитектуры электрохромных устройств и память

Существуют различные архитектуры электрохромных устройств:

  • Твердотельные
  • Гибридные

Гибридное стекло EC может сохранять свое состояние до 4-5 дней, таким образом проявляя функцию памяти [3]. ] и использует неорганический электрохромный слой с органическим (полимерным) электролитом. Однако удержание заряда ограничено утечкой, в результате чего стекло EC в конечном итоге возвращается в свое прозрачное состояние.

Твердотельное стекло EC, к сожалению, не обладает такой способностью памяти, но было доказано, что оно очень устойчиво в циклических испытаниях в экстремальных температурных условиях и при воздействии УФ-излучения, что обеспечивает срок службы около 20-30 лет, что идеально подходит для фасадов зданий. .

Почему так важно низкое напряжение?

Если продукт работает при напряжении ниже 60 В пост. тока, IET считает его устройством «безопасного сверхнизкого напряжения» (SELV) в соответствии с европейским стандартом EN 60335. Это важно, поскольку электрохромное стекло часто устанавливается на фасаде здания. или транспортное средство (например, самолет, яхта или автомобиль), и к нему потребуются провода.

Чем ниже напряжение (и ток), тем ниже риск для безопасности и тем дешевле кабели.

Для большой установки умного стекла вы можете себе представить, как низковольтные технологии могут также снизить затраты на установку и эксплуатационные расходы на техническое обслуживание.

Важно : Когда речь идет о безопасном сверхнизком напряжении, полученном от сети, предполагается, что в первичной цепи имеется «безопасный изолирующий трансформатор» или преобразователь (с отдельными обмотками), разделенный двойной (или усиленная) изоляция.

Области применения

Архитекторы, архитектурные технологи и инженеры по обслуживанию зданий, выбирающие электрохромное смарт-стекло, должны учитывать эти факторы, поскольку правила электропроводки могут различаться в каждой стране.

OEM-производители транспортных средств должны учитывать стоимость и вес кабелей, необходимых для питания смарт-стекла EC, а также необходимые преобразования напряжения от 48 В постоянного тока (для самолетов) или 24 В постоянного тока (для автомобилей).

OEM-производители бытовой техники должны учитывать требования к питанию и выбросы углекислого газа.

Еще один фактор: сверхнизкое напряжение делает возможным прямое питание электрохромного смарт-стекла от фотогальванических (PV) солнечных панелей на фасаде здания (или автомобиля), способствуя экологически безопасному решению во всех отношениях.

Это окружающая среда, глупо

Одним из очевидных преимуществ является существенное снижение затрат на кондиционирование воздуха благодаря подавлению инфракрасного излучения электрохромным интеллектуальным стеклом при установке на фасадах зданий (и в транспортных средствах).

Тот факт, что поведение может быть с динамическим управлением позволяет владельцам, менеджерам и пользователям настраивать фасад из электрохромного умного стекла в соответствии со своими потребностями, которые могут меняться в течение дня и, конечно же, в зависимости от сезона.

И последнее: время

Чуть не забыл: для смены состояния электрохромного смарт-стекла требуется порядка нескольких минут, что заметно отличается от технологий SPD и PDLC (которые занимают считанные секунды).

В архитектурных приложениях это постепенное изменение пропускания может быть преимуществом, поскольку оно позволяет нашим глазам приспосабливаться к медленным изменениям уровня освещенности.

Для транспортных приложений это может быть явным недостатком, но может быть компенсировано другими преимуществами контроля входящего видимого света и инфракрасного излучения с использованием безопасного низкого напряжения.

Для стекла Hybrid EC функция памяти требует питания только при изменении состояния.

Интеллектуальное стекло SPD и PDLC, с другой стороны, должно постоянно получать питание, пока оно поддерживается в прозрачном состоянии.

Итак, мне нужно электрохромное стекло?

Конечно, это зависит от ваших требований.

Для фасадов зданий и транспортных средств электрохромное смарт-стекло может снизить стоимость и стать распространенным решением, когда время переключения порядка минут не имеет значения.

Более важными могут быть возможности динамического отвода тепла в сочетании с низким энергопотреблением и безопасными напряжениями, которые могут перевесить чашу весов во многих приложениях.

Производители

Обратите внимание, что поиск в Google по запросу «электрохромное стекло» выдает множество производителей, которые производят не электрохромное смарт-стекло, а другие типы смарт-стекла.